Q. How can I receive additional help?
A. The Ignitor II will work with all OMC stern-drive applications, when our "diode fix" is supplied with a full 12 volts. The Ignitor II is designed to sense high current levels, and shut off before damage occurs. Check all wires for shorts, correct polarity and that the ignition coil's primary resistance level is acceptable.

Q. The vehicle will start, but then die. After waiting it will start again, What is wrong?
A. Perform Power and Ground Checks. The Ignitor II may have a "Low Voltage Problem." If the voltage supplied to the red Ignitor II wire is insufficient, the system may run for a period of time, and then shut down as the voltage drops due to engine heat. The period may vary from minutes to hours depending on available voltage and wiring condition. To remedy this condition refer to steps 2-4 of the wiring instructions.

Q. How do I check for a "Low Voltage Problem" or determine if I am getting adequate voltage?
A. Perform Power and Ground Checks. Also, to quickly test for a "Low Voltage Problem" or for adequate voltage, remove the Ignitor II red wire from the coil positive terminal. Attach a jumper wire from the battery positive terminal to the Ignitor II red wire. Try to start the vehicle. If the vehicle starts with this test refer to steps 2-4 of the wiring instructions for further information.

Q. How do I check my coil for primary resistance?
A. Remove all wires from the coil. Set the ohmmeter to the lowest scale. Attach one lead of the meter to the positive coil terminal. Attach the other lead to the negative coil terminal.

Q. May I modify the length of the wires?
A. Yes, you may cut the wires to any length your application requires. You may also add lengths of wire if needed (20-gauge). Make sure that all wire splices are clean and the connections are tight.

Q. Will the Ignitor II work with aftermarket capacitive discharge boxes?
A. Yes, you may cut the wires to any length your application requires. You may also add lengths of wire if needed (20-gauge). Make sure that all wire splices are clean and the connections are tight.

Q. Will the electronic shift assist in an OMC boat work with the Ignitor II?
A. Yes, the Ignitor II is compatible with most CD boxes in the same respect as points. You may cut the wires to any length your application requires. You may also add lengths of wire if needed (20-gauge). Make sure that all wire splices are clean and the connections are tight.

Q. How do I check my coil for primary resistance?
A. Remove all wires from the coil. Set the ohmmeter to the lowest scale. Attach one lead of the meter to the positive coil terminal. Attach the other lead to the negative coil terminal.

Q. May I modify the length of the wires?
A. You may cut the wires to any length your application requires. You may also add lengths of wire if needed (20-gauge). Make sure that all wire splices are clean and the connections are tight.

Q. Will theIgnitor II work with aftermarket capacitive discharge boxes?
A. Yes, you may cut the wires to any length your application requires. You may also add lengths of wire if needed (20-gauge). Make sure that all wire splices are clean and the connections are tight.

Q. Will the electronic shift assist in an OMC boat work with the Ignitor II?
A. Yes, the Ignitor II is compatible with most CD boxes in the same respect as points. You may cut the wires to any length your application requires. You may also add lengths of wire if needed (20-gauge). Make sure that all wire splices are clean and the connections are tight.

Q. How can I receive additional help?
A. Check our website for current trouble shooting tips and up to date technical information. Log on to www.pertronix.com. You may also contact our tech line at (909-547-9058)

Q. What is the problem?
A. The Ignitor II will work with all OMC stern-drive applications, when our "diode fix" is supplied with a full 12 volts. The Ignitor II is designed to sense high current levels, and shut off before damage occurs. Check all wires for shorts, correct polarity and that the ignition coil's primary resistance level is acceptable.

Q. The vehicle will start, but then die. After waiting it will start again, What is wrong?
A. Perform Power and Ground Checks. The Ignitor II may have a "Low Voltage Problem." If the voltage supplied to the red Ignitor II wire is insufficient, the system may run for a period of time, and then shut down as the voltage drops due to engine heat. The period may vary from minutes to hours depending on available voltage and wiring condition. To remedy this condition refer to steps 2-4 of the wiring instructions.

Q. How do I check for a "Low Voltage Problem" or determine if I am getting adequate voltage?
A. Perform Power and Ground Checks. Also, to quickly test for a "Low Voltage Problem" or for adequate voltage, remove the Ignitor II red wire from the coil positive terminal. Attach a jumper wire from the battery positive terminal to the Ignitor II red wire. Try to start the vehicle. If the vehicle starts with this test refer to steps 2-4 of the wiring instructions for further information.

Q. How do I check my coil for primary resistance?
A. Remove all wires from the coil. Set the ohmmeter to the lowest scale. Attach one lead of the meter to the positive coil terminal. Attach the other lead to the negative coil terminal.

Q. May I modify the length of the wires?
A. Yes, you may cut the wires to any length your application requires. You may also add lengths of wire if needed (20-gauge). Make sure that all wire splices are clean and the connections are tight.

Q. Will the Ignitor II work with aftermarket capacitive discharge boxes?
A. Yes, you may cut the wires to any length your application requires. You may also add lengths of wire if needed (20-gauge). Make sure that all wire splices are clean and the connections are tight.

Q. Will the electronic shift assist in an OMC boat work with the Ignitor II?
A. Yes, the Ignitor II is compatible with most CD boxes in the same respect as points. You may cut the wires to any length your application requires. You may also add lengths of wire if needed (20-gauge). Make sure that all wire splices are clean and the connections are tight.
WIRING INSTRUCTIONS
1. The Ignitor II ignition can be used in conjunction with most ignition coils rated at 0.45 ohms or greater. For optimum performance purchase and install the Flamethrower II high performance coil.
2. Attach the black Ignitor II wire to the negative coil terminal. Attach the red Ignitor II wire to the positive coil terminal. (See Figure 3)

A. Recommended Installation: Many vehicles came equipped with ballast resistor or resistance wire. To achieve optimum performance from the Ignitor II ignition system, we recommend removal of these components.
 • To remove a ballast resistor, (normally white ceramic blocks 3 to 4 inches long), disconnect all wires on both ends of the ballast resistor. Remove the resistor from the vehicle and splice the disconnected wires together at a single point.
 • To remove a resistance wire, trace the coil power wire, which was previously connected to the positive coil terminal, back to the fuse block. Bypass this wire with a 12-gauge copper stranded wire.

B. Alternative Installation: The Ignitor II can also be installed in applications retaining the ballast resistor or resistance wire.
 • Attach the Ignitor II black wire to the negative coil terminal. Attach the Ignitor II red wire to the ignition side of resistance, or any 12 volt ignition power source.

3. Check to insure that the polarity is correct, and that all connections are tight.
4. Re-connect the battery.
5. Perform the Power and Ground tests. Refer to the Power and Ground test procedure.
6. Start the engine and allow it to reach normal operating temperature. Check ignition timing, and adjust to the desired setting.
7. Replace the rotor and distributor cap. Make sure all spark plug wires are securely attached.
8. See Wiring Instructions.

POWER & GROUND TESTS
It is imperative that the power and grounds be checked as part of the installation procedure. After installing the Ignitor module and the distributor and with the distributor in the engine, use a digital multi-meter to measure the resistance from the aluminum plate holding the module to battery (-), the net resistance must be less than 0.2 ohms. (Set meter to lowest ohms setting). The net resistance is the meter reading minus the resistance of the meter leads. If the net resistance is greater than 0.2 ohms, the source of the faulty ground must be found and fixed. Usually the source of the bad ground is easily found by holding one probe on an original location and moving the second probe toward the static probe. Where the resistance drops identifies the source.

Maximum resistance from Ignitor plate to battery negative terminal.	0.2 ohms
EXAMPLE:	
Resistance from Ignitor plate to battery negative (-) terminal.	0.4 ohms
Resistance of meter leads	0.2 ohms
After subtracting meter lead resistance, your net resistance is:	0.2 ohms

VOLTAGE TEST
1. (Do not disconnect wires from Ignition coil). Place ignition switch in the “off” position.
2. Connect a jumper wire from negative (-) terminal of the coil to a good engine ground.
3. Connect the voltmeter red lead to the positive (+) terminal of the coil and the black lead to a good engine ground.
4. Turn the ignition switch to the “on” position and note voltage reading on the voltmeter. Quickly read the voltage and turn ignition “OFF”. Leaving ignition “ON” for an extended period could result in permanent damage to the Ignitor.
5. SEE CHART BELOW FOR SPECIFICATIONS.

Note: Low voltage can be caused by poor connections, poor contacts in the ignition switch, ballast resistor, and or a resistance wire in the wiring harness (Factory Installed).

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignition Switch “ON”</td>
<td>8.0V</td>
</tr>
<tr>
<td>Cranking</td>
<td>8.0V</td>
</tr>
<tr>
<td>Engine Running</td>
<td>N/A</td>
</tr>
</tbody>
</table>